213 research outputs found

    Fe nano-particle coatings for high temperature wear resistance

    No full text
    Oxidational wear continues to present an economic challenge for the replacement of components subject to high temperature fretting and sliding contacts in applications such as gas turbine engines. At elevated temperatures, low friction oxide ‘glaze’ layers can form and act as an interface between the contact and the substrate material. Whilst desirable, the glaze is formed from wear debris and often consumes the underlying substrate material. In order to induce rapid formation of low friction oxide layers without a severe ‘running-in’ period, nano particles of Fe in the range 5-10nm were deposited on ground flat ended pin and plate 080M40 substrates using a terminated gas condensation PVD process, to a thickness of 600nm. Coatings were tested in a reciprocating geometry at a fixed stroke length of 0.4mm, frequency of 31Hz and 40N normal load (1MPa contact stress) and at ambient, 300°C and 540°C. At ambient temperature the coated surfaces exhibited higher friction but lower wear compared to the uncoated substrates, whereas at elevated temperatures, the coated surfaces exhibited slightly lower steady state dynamic friction coefficients, and minimal changes in wear depth after a short incubation period. SEM of the worn surfaces indicated that hard oxide plateaus were responsible for the load bearing contact area at elevated temperatures. Cross sectional FIB, TEM and SIMS confirmed that at elevated temperatures, the nano-particle coating induced rapid formation of a nano-crystalline porous surface oxide film of mixed composition which protected the substrate from severe wear during the running-in period

    Results of a UK industrial tribological survey

    No full text
    During the summer of 2012, the National Centre for Advanced Tribology at Southampton (nCATS) undertook a UK-wide industrial tribological survey in order to assess the explicit need for tribological testing within the UK. The survey was designed and implemented by a summer intern student, Mr Simon King, under the supervision of Drs John Walker and Terry Harvey and supported by the director of nCATS, Professor Robert Wood. The survey built upon on two previous tribological surveys conducted through the National Physical Laboratory (NPL) during the 1990’s. The aim was to capture a snapshot of the current use of tribological testing within UK industry and its perceived reliability in terms of the test data generated. The survey also invited participants to speculate about how UK tribology could improve its approach to testing. The survey was distributed through the nCATS industrial contact list, which comprises of over 400 contacts from a broad spectrum of commercial industries. The Institute of Physics (IOP) tribology group also assisted by distributing the survey to its membership list. A total of 60 responses were received for the survey, out of which 39 had fully completed the questionnaire. Participants came from a broad spread of industrial backgrounds, with the energy sector having the highest representation. Only 40% of respondents were dedicated tribologists/surface engineers, again reflecting the multi-disciplinary nature of the field. It was found that the companies that had the highest annual turnover also appeared to expend the most on tribology. The majority of respondents indicated that as a percentage of turnover tribology accounted for less than 1%, however the lack of hard figures only for tribology make this a conservative estimate. The greatest concern in relation to tribology of those who responded was the cost; however the influence of legislation and product reliability were also driving factors. Abrasive wear was still considered the number one tribological wear mechanism, with sliding contacts ranking as the most common type of wear interface. Metallic and hard coated surfaces were the most commonly encountered type of material suffering from tribological wear phenomena. Laboratory scale testing was a significant part of introducing a new tribological component, however component specific testing was considered the most reliable form of testing a new component over standardised test geometries. Overall there appeared to be much potential for improving the reliability of tribological test data, with most respondents indicating that simply more testing was not the best perceived approach to improving tribological data but rather more reliable, representative tests with improved knowledge capture. Most companies possessed an internal database to assist them with tribological information; however, many also expressed a strong desire for the use of a commercial or national database, although the format this might take was less clear. Opinions appeared split as to whether there would be a collective willingness to contribute to a centralised database, presumably on the grounds on the sensitivity of data

    Pakistans ethnischer Flickenteppich und die Probleme der Verfassungsbildung

    Get PDF
    Die Seminararbeit setzt sich mit den Schwierigkeiten bei der Integration der verschiedenen ethnischen Gruppen innerhalb der pakistanischen Gesellschaft auseinander. Seit der Staatsgründung 1947 versucht die pakistanische Regierung gegen die vielfältigen separatistischen Strömungen und Bewegungen einzelner ethnischer Gruppen anzukämpfen. Welche ethnische Gruppen dabei mit separatistischen Strömungen die pakistanische Regierung beim Aufbau eines neuen Staates, der Formulierung gemeinsamer "policies" und einer Verfassung für die neue "Nation" in Schach hielten, ist Hauptgegenstand dieser Arbeit

    Tidal turbines that survive?

    No full text
    Tidal turbines offer an exciting opportunity to exploit ocean current flows to generate sustainable energy. However, a key to their success is the ability to operate with minimal intervention in the ocean over extended periods (15-20 years). This talk explored the likely design and operational issues that will influence satisfactory performance associated with material corrosion and biofouling. The main difficulty is that turbine economic viability is capital driven so whole system, including operation and maintenance needs to be as cost-effective as possible. Although can use approaches developed from those applied for ship design and in the offshore industry there is a need to appreciate that cost-drivers are different. For instance a ‘Gold plated’ technology approach from oil and gas industry may not deliver cost-effective solutions

    Review on the development of truly portable and in-situ capillary electrophoresis systems

    No full text
    Capillary electrophoresis (CE) is a technique which uses an electric field to separate a mixed sample into its constituents. Portable CE systems enable this powerful analysis technique to be used in the field. Many of the challenges for portable systems are similar to those of autonomous in-situ analysis and therefore portable systems may be considered a stepping stone towards autonomous in-situ analysis. CE is widely used for biological and chemical analysis and example applications include: water quality analysis; drug development and quality control; proteomics and DNA analysis; counter-terrorism (explosive material identification) and corrosion monitoring. The technique is often limited to laboratory use, since it requires large electric fields, sensitive detection systems and fluidic control systems. All of these place restrictions in terms of: size, weight, cost, choice of operating solutions, choice of fabrication materials, electrical power and lifetime. In this review we bring together and critique the work by researchers addressing these issues. We emphasize the importance of a holistic approach for portable and in-situ CE systems and discuss all the aspects of the design. We identify gaps in the literature which require attention for the realization of both truly portable and in-situ CE systems

    Diamond like carbon coatings for potential application in biological implants – a review

    No full text
    Production of wear debris has been linked to the failure of numerous hip implants. With the current focus on increasing the implant longevity, thus wear and corrosion resistance is important. Hard coatings have the potential to reduce the wear and corrosion. Diamond like Carbon (DLC) coatings exhibit properties that could make them viable for implants. This paper critically reviews previously published research into usage of DLC coatings for implants. Overall DLCs seem to be an effective coating for implants but with the variance in results, further testing is required for clarification of us

    Real-time on-board condition monitoring of train axle bearings

    No full text
    Premature failure of rail axle bearings causes a significant increase in train operating costs and can impact train safety. A new on-board condition monitoring approach provided by Perpetuum Ltd is fitted on passenger trains to provide the operator with real-time information on bearing health. This new technology allows the detection of early bearing damage.This paper reports an initial study to understand the source of vibrations. The final aim of the project is to connect the increasing vibration data to the bearing surface damage, measured with surface profilometr

    Engine oil acidity detection using solid state ion selective electrodes

    No full text
    Initial results from oil acidity measurements using thick film electrodes are presented. The results suggest that as the oil degrades, its pH/acidity follows a specific trend. Furthermore, an investigation into the feasibility of detecting changes in oil acidity (i.e. TAN value) using ion selective electrodes fabricated utilising thick film technology is presented. The thick-film (screen printing) technique is a decent means for the mass production of rugged, compact and disposable sensors as many such devices can be printed at the same time making them very cost effective to manufacture. Thick-Film ion selective and reference electrodes were fabricated, calibrated and tested in different oil samples varying its acidity. Ruthenium oxide (RuO2) pH sensitive electrodes were screen printed and were used against silver/silver chloride (Ag/AgCl) reference electrodes as well as a commercial glass Ag/AgCl reference electrode. The potentiometric sets of electrodes were calibrated in pH 4, 7 and 10 buffers in a cyclic manner and the voltage was recorded using a high input impedance voltmete
    corecore